←back to thread

688 points crescit_eundo | 1 comments | | HN request time: 0.286s | source
Show context
azeirah ◴[] No.42141993[source]
Maybe I'm really stupid... but perhaps if we want really intelligent models we need to stop tokenizing at all? We're literally limiting what a model can see and how it percieves the world by limiting the structure of the information streams that come into the model from the very beginning.

I know working with raw bits or bytes is slower, but it should be relatively cheap and easy to at least falsify this hypothesis that many huge issues might be due to tokenization problems but... yeah.

Surprised I don't see more research into radicaly different tokenization.

replies(14): >>42142033 #>>42142384 #>>42143197 #>>42143338 #>>42143381 #>>42144059 #>>42144207 #>>42144582 #>>42144600 #>>42145725 #>>42146419 #>>42146444 #>>42149355 #>>42151016 #
aithrowawaycomm ◴[] No.42142384[source]
FWIW I think most of the "tokenization problems" are in fact reasoning problems being falsely blamed on a minor technical thing when the issue is much more profound.

E.g. I still see people claiming that LLMs are bad at basic counting because of tokenization, but the same LLM counts perfectly well if you use chain-of-thought prompting. So it can't be explained by tokenization! The problem is reasoning: the LLM needs a human to tell it that a counting problem can be accurately solved if they go step-by-step. Without this assistance the LLM is likely to simply guess.

replies(6): >>42142733 #>>42142807 #>>42143239 #>>42143800 #>>42144596 #>>42146428 #
Der_Einzige ◴[] No.42142807[source]
I’m the one who will fight you including with peer reviewed papers indicating that it is in fact due to tokenization. I’m too tired but will edit this for later, so take this as my bookmark to remind me to respond.
replies(4): >>42142884 #>>42144506 #>>42145678 #>>42147347 #
azeirah ◴[] No.42145678[source]
I strongly believe that the problem isn't that tokenization isn't the underlying problem, it's that, let's say bit-by-bit tokenization is too expensive to run at the scales things are currently being ran at (openai, claude etc)
replies(1): >>42150150 #
1. int_19h ◴[] No.42150150[source]
It's not just a current thing, either. Tokenization basically lets you have a model with a larger input context than you'd otherwise have for the given resource constraints. So any gains from feeding the characters in directly have to be greater than this advantage. And for CoT especially - which we know produces significant improvements in most tasks - you want large context.