←back to thread

466 points 0x63_Problems | 5 comments | | HN request time: 0.879s | source
Show context
perrygeo ◴[] No.42138092[source]
> Companies with relatively young, high-quality codebases benefit the most from generative AI tools, while companies with gnarly, legacy codebases will struggle to adopt them. In other words, the penalty for having a ‘high-debt’ codebase is now larger than ever.

This mirrors my experience using LLMs on personal projects. They can provide good advice only to the extent that your project stays within the bounds of well-known patterns. As soon as your codebase gets a little bit "weird" (ie trying to do anything novel and interesting), the model chokes, starts hallucinating, and makes your job considerably harder.

Put another way, LLMs make the easy stuff easier, but royally screws up the hard stuff. The gap does appear to be widening, not shrinking. They work best where we need them the least.

replies(24): >>42138267 #>>42138350 #>>42138403 #>>42138537 #>>42138558 #>>42138582 #>>42138674 #>>42138683 #>>42138690 #>>42138884 #>>42139109 #>>42139189 #>>42140096 #>>42140476 #>>42140626 #>>42140809 #>>42140878 #>>42141658 #>>42141716 #>>42142239 #>>42142373 #>>42143688 #>>42143791 #>>42151146 #
cheald ◴[] No.42139109[source]
The niche I've found for LLMs is for implementing individual functions and unit tests. I'll define an interface and a return (or a test name and expectation) and say "this is what I want this to do", and let the LLM take the first crack at it. Limiting the bounds of the problem to be solved does a pretty good job of at least scaffolding something out that I can then take to completion. I almost never end up taking the LLM's autocompletion at face value, but having it written out to review and tweak does save substantial amounts of time.

The other use case is targeted code review/improvement. "Suggest how I could improve this" fills a niche which is currently filled by linters, but can be more flexible and robust. It has its place.

The fundamental problem with LLMs is that they follow patterns, rather than doing any actual reasoning. This is essentially the observation made by the article; AI coding tools do a great job of following examples, but their usefulness is limited to the degree to which the problem to be solved maps to a followable example.

replies(3): >>42140322 #>>42143531 #>>42143847 #
MarcelOlsz ◴[] No.42140322[source]
Can't tell you how much I love it for testing, it's basically the only thing I use it for. I now have a test suite that can rebuild my entire app from the ground up locally, and works in the cloud as well. It's a huge motivator actually to write a piece of code with the reward being the ability to send it to the LLM to create some tests and then seeing a nice stream of green checkmarks.
replies(3): >>42140464 #>>42140879 #>>42143641 #
1. rr808 ◴[] No.42143641[source]
I struggle to get github copilot to create any unit tests that provide any value. How to you get it to create really useful tests?
replies(2): >>42144840 #>>42144903 #
2. BillyTheKing ◴[] No.42144840[source]
Would recommend to try out anthropic sonnet 3.5 for this one - usually generates decent unit tests for reasonably sized functions
3. MarcelOlsz ◴[] No.42144903[source]
I use claude-3-5-sonnet-20241022 with a very explicit .cursorrules file with the cursor editor.
replies(1): >>42145845 #
4. ponector ◴[] No.42145845[source]
Can you share your .cursorrules? For me cursor is not much better than autocomplete, but I'm writing mostly e2e tests.
replies(1): >>42146031 #
5. MarcelOlsz ◴[] No.42146031{3}[source]
You can find a bunch on https://cursor.directory/.