Most active commenters
  • myownpetard(3)

←back to thread

251 points slyall | 18 comments | | HN request time: 0.001s | source | bottom
Show context
aithrowawaycomm ◴[] No.42060762[source]
I think there is a slight disconnect here between making AI systems which are smart and AI systems which are useful. It’s a very old fallacy in AI: pretending tools which assist human intelligence by solving human problems must themselves be intelligent.

The utility of big datasets was indeed surprising, but that skepticism came about from recognizing the scaling paradigm must be a dead end: vertebrates across the board require less data to learn new things, by several orders of magnitude. Methods to give ANNs “common sense” are essentially identical to the old LISP expert systems: hard-wiring the answers to specific common-sense questions in either code or training data, even though fish and lizards can rapidly make common-sense deductions about manmade objects they couldn’t have possibly seen in their evolutionary histories. Even spiders have generalization abilities seemingly absent in transformers: they spin webs inside human homes with unnatural geometry.

Again it is surprising that the ImageNet stuff worked as well as it did. Deep learning is undoubtedly a useful way to build applications, just like Lisp was. But I think we are about as close to AGI as we were in the 80s, since we have made zero progress on common sense: in the 80s we knew Big Data can poorly emulate common sense, and that’s where we’re at today.

replies(5): >>42061007 #>>42061232 #>>42068100 #>>42068802 #>>42070712 #
1. j_bum ◴[] No.42061007[source]
> vertebrates across the board require less data to learn new things, by several orders of magnitude.

Sometimes I wonder if it’s fair to say this.

Organisms have had billions of years of training. We might come online and succeed in our environments with very little data, but we can’t ignore the information that’s been trained into our DNA, so to speak.

What’s billions of years of sensory information that drove behavior and selection, if not training data?

replies(7): >>42062463 #>>42064030 #>>42064183 #>>42064895 #>>42068159 #>>42070063 #>>42071450 #
2. aithrowawaycomm ◴[] No.42062463[source]
My primary concern is the generalization to manmade things that couldn’t possibly be in the evolutionary “training data.” As a thought experiment, it seems very plausible that you can train a transformer ANN on spiderwebs between trees, rocks, bushes, etc, and get “superspider” performance (say in a computer simulation). But I strongly doubt this will generalize to building webs between garages and pantries like actual spiders, no matter how many trees you throw at it, so such a system wouldn’t be ASI.

This extends to all sorts of animal cognitive experiments: crows understand simple pulleys simply by inspecting them, but they couldn’t have evolved to use pulleys. Mice can quickly learn that hitting a button 5 times will give them a treat: does it make sense to say that they encountered a similar situation in their evolutionary past? It makes more sense to suppose that mice and crows have powerful abilities to reason causally about their actions. These abilities are more sophisticated than mere “Pavlovian” associative reasoning, which is about understanding stimuli. With AI we can emulate associative reasoning very well because we have a good mathematical framework for Pavlovian responses as a sort of learning of correlations. But causal reasoning is much more mysterious, and we are very far from figuring out a good mathematical formalism that a computer can make sense of.

I also just detest the evolution = training data metaphor because it completely ignores architecture. Evolution is not just glomming on data, it’s trying different types of neurons, different connections between them, etc. All organisms alive today evolved with “billions of years of training,” but only architecture explains why we are so much smarter than chimps. In fact I think the “evolution” preys on our misconception that humans are “more evolved” than chimps, but our common ancestor was more primitive than a chimp.

replies(3): >>42066570 #>>42067131 #>>42072226 #
3. RaftPeople ◴[] No.42064030[source]
> Organisms have had billions of years of training. We might come online and succeed in our environments with very little data, but we can’t ignore the information that’s been trained into our DNA, so to speak

It's not just information (e.g. sets of innate smells and response tendencies), but it's also all of the advanced functions built into our brains (e.g. making sense of different types of input, dynamically adapting the brain to conditions, etc.).

4. lubujackson ◴[] No.42064183[source]
Good point. And don't forget the dynamically changing environment responding with a quick death for any false path.

Like how good would LLMs be if their training set was built by humans responding with an intelligent signal at every crossroads.

5. SiempreViernes ◴[] No.42064895[source]
This argument mostly just hollows out the meaning of training: evolution gives you things like arms and ears, but if you say evolution is like training you imply that you could have grown a new kind of arm in school.
replies(1): >>42065233 #
6. horsawlarway ◴[] No.42065233[source]
Training an LLM feels almost exactly like evolution - the gradient is "ability to procreate" and we're selecting candidates from related, randomized genetic traits and iterating the process over and over and over.

Schooling/education feels much more like supervised training and reinforcement (and possibly just context).

I think it's dismissive to assume that evolution hasn't influenced how well you're able to pick up new behavior, because it's highly likely it's not entirely novel in the context of your ancestry, and the traits you have that have been selected for.

7. visarga ◴[] No.42066570[source]
I don't think "humans/animals learn faster" holds. LLMs learn new things on the spot, you just explain it in the prompt and give an example or two.

A recent paper tested both linguists and LLMs at learning a language with less than 200 speakers and therefore virtually no presence on the web. All from a few pages of explanations. The LLMs come close to humans.

https://arxiv.org/abs/2309.16575

Another example is the ARC-AGI benchmark, where the model has to learn from a few examples to derive the rule. AI models are closing the gap to human level, they are around 55% while humans are at 80%. These tests were specifically designed to be hard for models and easy for humans.

Besides these examples of fast learning, I think the other argument about humans benefiting from evolution is also essential here. Similarly, we can't beat AlphaZero at Go, as it evolved its own Go culture and plays better than us. Evolution is powerful.

8. car ◴[] No.42067131[source]
It’s all in the architecture. Also, biological neurons are orders of magnitude more complex than NN’s. There’s a plethora of neurotransmitters and all kinds of cellular machinery for dealing with signals (inhibitory, excitatory etc.).
9. ◴[] No.42068159[source]
10. marcosdumay ◴[] No.42070063[source]
> but we can’t ignore the information that’s been trained into our DNA

There's around 600MB in our DNA. Subtract this from the size of any LLM out there and see how much you get.

replies(1): >>42072096 #
11. outworlder ◴[] No.42071450[source]
Difficult to compare, not only neurons are vastly more complex, but the neural networks change and adapt. That's like if GPUs were not only programmed by software, but the hardware could also be changed based on the training data (like more sophisticated FPGAs).

Our DNA also stores a lot of information, but it is not that much.

Our dogs can learn about things such as vehicles that they have not been exposed to nearly enough, evolution wide. And so do crows, using cars to crack nuts and then waiting for red lights. And that's completely unsupervised.

We have a long way to go.

replies(1): >>42072768 #
12. myownpetard ◴[] No.42072096[source]
A more fair comparison would be subtract it from the size the of source code required to represent the LLM.
replies(2): >>42072476 #>>42072730 #
13. myownpetard ◴[] No.42072226[source]
Evolution is the heuristic search for effective neural architectures. It is training data, but for the meta-search for effective architectures, which gets encoded in our DNA.

Then we compile and run that source code and our individual lived experience is the training data for the instantiation of that architecture, e.g. our brain.

It's two different but interrelated training/optimization processes.

14. nick3443 ◴[] No.42072476{3}[source]
More like the source code AND the complete design for a 200+ degree of freedom robot with batteries etc. pretty amazing.

It's like a 600mb demoscene demo for Conway's game of life!

replies(1): >>42073032 #
15. marcosdumay ◴[] No.42072730{3}[source]
The source code is the weights. That's what they learn.
replies(1): >>42073049 #
16. klipt ◴[] No.42072768[source]
You say "unsupervised" but crows are learning with feedback from the physical world.

Young crows certainly learn: hitting objects is painful. Avoiding objects avoids the pain.

From there, learning that red lights correlates with the large, fast, dangerous object stopping, is just a matter of observation.

17. Terr_ ◴[] No.42073032{4}[source]
That's underselling the product, a swarm of nanobots that are (literally, currently) beyond human understanding that are also the only way to construct certain materials and systems.

Inheritor of the Gray Goo apocalypse that covered the planet, this kind constructs an enormous mobile mega-fortress with a literal hive-mind, scouring the environment for raw materials and fending off hacking attempts by other nanobots. They even simulate other hive-minds to gain an advantage.

18. myownpetard ◴[] No.42073049{4}[source]
I disagree. A neural network is not learning it's source code. The source code specifies the model structure and hyperparameters. Then it compiled and instantiated into some physical medium, usually a bunch of GPUs, and weights are learned.

Our DNA specifies the model structure and hyperparameters for our brains. Then it is compiled and instantiated into a physical medium, our bodies, and our connectome is trained.

If you want to make a comparison about the quantity of information contained in different components of an artificial and a biological system, then it only makes sense if you compare apples to apples. DNA:Code :: Connectome:Weights