> Wait, am I crazy for thinking relations are not sets? Two sets can be coextensive without the relation have the same intension, no? Like the set of all Kings of Mars and the set of Queens of Jupiter are coextensive, but the relations are different because they have different truth conditions. Or am I misunderstanding?
No-one can stop you from using terms as you please and investigating their consequences, but, at least in modern mathematical parlance, a binary relation is the set of ordered pairs that are "related" by it. (Your relation would seem to be just a bare set, or perhaps a unary relation, not a binary relation which I think is what is often meant without default modifier.)