←back to thread

288 points antidnan | 1 comments | | HN request time: 0.204s | source
Show context
_heimdall ◴[] No.41919400[source]
Well I guess this is a good win for short term energy infrastructure, though I'm always pretty torn when its at the cost of ripping open huge swaths of earth to get at the raw material.

It is interesting to see how much of this data could be modelled based on wastewater brines from other industries in the area, assuming we go on to mine the lithium it will say a lot if the ML predictions prove accurate.

One thing I couldn't tell, and its probably just a limitation of how much time I could spend reading the source paper, is what method would be needed to extract the bulk of the lithium expected to be there. If processing brine water is sufficient that may be easier to control externalities than if they have to strip mine and get all the overburden out of the way first.

replies(3): >>41919627 #>>41920208 #>>41922599 #
jillesvangurp ◴[] No.41922599[source]
> cost of ripping open huge swaths of earth to get at the raw material.

This mining offsets mining for other things that is happening at several orders of magnitude larger scale. Oil, coal, gas, etc. mining is huge and lithium batteries plus renewables are already reducing the need for those. So, the transition to renewables and batteries might actually result in a net reduction of mining.

Of course doing lithium mining cleanly and responsibly is an important topic. Especially in places close to where people live. But considering the vast amounts of other stuff we mine already at a much larger scale than we'll ever need to mine lithium, this is a drop in the ocean.

And of course the lithium that is mined can be used and recycled over and over again. Once it is in circulation, we'll be re-using it forever. And given the improvements in battery tech, production processes, etc. the amount currently in circulation is likely to power a larger amount of battery capacity when we do recycle it eventually. Even when considering inevitable losses during recycling.

Lithium recycling processes are working fine already of course but there's very little recycling being done at scale for the simple reason that most lithium batteries in use are still very young and quite far away from needing any recycling. If anything, the improved life times of batteries is pushing the date that we need to be recycling at scale further and further away.

Extraction methods very much depend on composition of the deposits and whether they are in brine or other form and what other materials are present. There's a wide variety of brines, rock compositions, clays, etc with some lithium in them.

replies(1): >>41923186 #
1. pcl ◴[] No.41923186[source]
> ”And of course the lithium that is mined can be used and recycled over and over again. Once it is in circulation, we'll be re-using it forever. And given the improvements in battery tech, production processes, etc. the amount currently in circulation is likely to power a larger amount of battery capacity when we do recycle it eventually. Even when considering inevitable losses during recycling.”

This point is overlooked so often in these discussions. Lithium is not a consumable in batteries, whereas oil / tar / coal etc. is. So, we do some ugly mining for a bit, and then basically stop once we have the lithium we need for use in batteries over and over again. It’s a completely different model than extract-and-burn.