Luckily, our imaginary reality of precision is close enough to the true reality of probability that it enables us to build things like computer chips (i.e., all of modern civilization). And yet, the nature of physics requires error correction for those chips. This problem becomes more obvious when working at the quantum scale, where quantum error correction remains basically unsolved.
I’m just reframing the problem of finding a grand unified theory of physics that encompasses a seemingly deterministic macro with a seemingly probabilistic micro. I say seemingly, because it seems that macro-mysteries like dark matter will have a more elegant and predictive solution once we understand how micro-probabilities create macro-effects. I suspect that the answer will be that one plus one is usually equal to two, but that under odd circumstances, are not. That’s the kind of math that will unlock new frontiers for hacking the nature of our reality.