←back to thread

171 points belter | 1 comments | | HN request time: 0s | source
Show context
at_a_remove ◴[] No.41893130[source]
I only got my undergrad in physics, but I think there is something there to be mined between time as a dimension and the second law of thermodynamics. Why this one?

First, I will render a quote which never failed to amuse me: "The law that entropy always increases holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations -- then so much the worse for Maxwell's equations. If it is found to be contradicted by observation -- well, these experimentalists do bungle things sometimes. But if your theory is found to be against the Second Law of Thermodynamics I can give you no hope; there is nothing for it to collapse in deepest humiliation." (Eddington)

Why such honor? For one, in statistical physics, you can more or less derive the second law of thermodynamics, from scratch. No need for observation. It's just there the same way the quadratic equation is. Somewhere I have a cheap Dover reprint which contains a relatively easy to follow construction of the second law. It's the math. You can measure things badly, you can find one phenomenon creating the appearance of another, but you cannot fool The Math.

And so the statistical physics you can get from just math gives you this arrow of time, flying only one way, just as we see from spacetime.

To me, and again, I only got a few grad courses under my belt in it, this suggests not just a deep connection between entropy and spacetime, but the inevitability of it from the basic math (really, a talented high schooler could be coached through it) means that there is something about large (for n = ?) numbers of particles losing the reversibility which is so often present in particle interactions where n is smaller. What gives there? How do we go from this "trend" emerging to it being a property of spacetime even if no particles are sitting in said spacetime.

Not that I would have dared write the great Wheeler, but I have wondered if his "geon" concept would have fit in with this sort of thing. It seems so fundamental. One can imagine a universe with a different number of un-unified forces, or gravity dropping as the inverse-cube, or varying physical constants, but the math is still the same in these universes and it then suggests that there's no, uh, room for an option wherein the time facet of spacetime is anything but an arrow flying forever on towards entropy in its many masks.

A great task, or perhaps a very alluring windmill, for someone younger and brighter than I.

replies(4): >>41893213 #>>41893568 #>>41896239 #>>41896550 #
itishappy ◴[] No.41896239[source]
I'm in a similar boat, but I've always felt the opposite! I've always felt the second law is kind of a shoe-in and maybe even shouldn't be a law at all.

The first and third laws, "energy is never created or destroyed" and "for every action there's an equal and opposite reaction" are always true! To my knowledge, no process is ever allowed to break either law. (With exceptions for cosmological process like the expansion of the universe that we really don't purport to understand.)

The second, "entropy can only increase" isn't! That's right, I said it. The processes it describes (a cup unshuttering, or coffee unmixing, or particles all finding their way into the same side of a box) are totally legal process, albeit statistically unlikely. If you restrict your system to few enough particles (say, n=3), random processes that decrease entropy are not only possible, but something that happens with regularity!

Now, I make no claims to be right here. I suspect that Eddington fellow probably knows what he's talking about. But, this has been a longstanding thorn in my understanding of physics, so I'd be interested if anybody has any interesting insights!

replies(1): >>41896468 #
1. elashri ◴[] No.41896468[source]
> With exceptions for cosmological process like the expansion of the universe that we really don't purport to understand

That's not accurate, expansion of the universe (that the standard model of cosmology describes) does not violate conservation of energy. It makes it a little different from the classical view.

In classical mechanics, energy conservation is a well-defined concept in a static or non-expanding spacetime. However, in an expanding universe, especially one described by general relativity (like ours), the energy of the universe is not necessarily conserved in the traditional sense, because the global energy of the universe is difficult to define when spacetime itself is dynamic (expanding)

So GR does not require global conversation of energy in the same way classical (here classical means strictly newtonian mechanics) mechanics does. This dynamic nature of the spacetime allows for energy to appear to "change" due to the expansion. It is more complicated when you add things like dark energy to the equation.

One interesting aspect is the phenomenon of cosmological redshift. As the universe expands, light travelling through space is redshifted. This means that ita wavelength increases and its energy decreases. This "loss" of energy from light is not violating conservation of energy. It is rather consequence of the expansion itself.

Now lets back to dark energy which is driving the accelerated expansion of the universe, the energy associated with the vacuum of space remains constant per unit volume, but as space itself expands, the total energy associated with dark energy increases. This again does not violate the laws of physics because energy conservation is more complex in general relativity than in Newtonian mechanics. And of course the local energy conservation works in a well-defined way if you take a localized region of the spacetime.