←back to thread

589 points atomic128 | 4 comments | | HN request time: 0s | source
Show context
philipkglass ◴[] No.41841019[source]
Based on the headline I thought that this was an enormous capital commitment for an enormous generating capacity, but the deal is with a company called Kairos that is developing small modular reactors with 75 megawatts of electrical output each [1]. 7 reactors of this type, collectively, would supply 525 megawatts (less than half of a typical new commercial power reactor like the AP1000, HPR1000, EPR, or APR1400).

Kairos is in a pretty early stage. They started building a test reactor this summer, scheduled for completion by 2027:

https://www.energy.gov/ne/articles/kairos-power-starts-const...

EDIT: Statement from the official Google announcement linked by xnx below [2]:

Today, we’re building on these efforts by signing the world’s first corporate agreement to purchase nuclear energy from multiple small modular reactors (SMRs) to be developed by Kairos Power. The initial phase of work is intended to bring Kairos Power’s first SMR online quickly and safely by 2030, followed by additional reactor deployments through 2035. Overall, this deal will enable up to 500 MW of new 24/7 carbon-free power to U.S. electricity grids and help more communities benefit from clean and affordable nuclear power.

[1] https://kairospower.com/technology/

[2] https://news.ycombinator.com/item?id=41841108

replies(8): >>41841055 #>>41842094 #>>41842395 #>>41843875 #>>41844253 #>>41845537 #>>41845613 #>>41848283 #
onepointsixC ◴[] No.41841055[source]
Yeah I’m not going to lie, that’s quite disappointing. Google funding several AP1000’s would be huge.
replies(4): >>41841072 #>>41841432 #>>41841621 #>>41844089 #
iknowstuff ◴[] No.41841072[source]
seeing how 2GW of nuclear cost $34B in Georgia, why would Google waste $120B when they can get the same output for at most half the price (and realistically more like 1/10th) using renewables and batteries? and they’d have results in 2 years instead of 2 decades.

edit: to be clear, 1GW of wind or solar is $1B. Build 3GW for overcapacity and you’re still at just 17% of the cost of 1GW of nuclear, and you technically have 3x more capacity. Now figure out how many megapacks you can buy for the $14B/GW you saved https://www.tesla.com/megapack/design (answer: 16GW/68GWh)

replies(9): >>41841088 #>>41841147 #>>41841158 #>>41841606 #>>41843120 #>>41843823 #>>41844522 #>>41845945 #>>41846378 #
JumpCrisscross ◴[] No.41841147[source]
> using renewables and batteries? and they’d have results in 2 years instead of 2 decades

We have nothing close to the battery fabrication pipeline to make that timeline true, certainly not at scale. If this move works, Google will have cemented its power needs and economics for decades to come.

replies(4): >>41841275 #>>41841498 #>>41841512 #>>41842549 #
matthewdgreen ◴[] No.41841512[source]
Global battery manufacturing capacity was 2,600GWh in 2023 [1], and has probably already exceeded that this year. The IEA projects closer to 4TWh by 2025, and nearly 7TWh by 2030 [2].

You need to pay attention because this is happening fast.

[1] https://www.bloomberg.com/news/newsletters/2024-04-12/china-... [2] https://www.iea.org/data-and-statistics/charts/lithium-ion-b...

replies(1): >>41841634 #
JumpCrisscross ◴[] No.41841634[source]
> nearly 7TWh by 2030

That's a big number. Here's a bigger one: 30,000 TWh, about our current electricity consumption [1]. 7 TWh in 2030 is less than 1/4,000th total electriciy production today. (You obviously don't need 1:1 coverage. But 2 hours in 2030 against a year's demand today is still a nudge.)

Now consider EVs. Then add the tens of TWh of annual power demand AI is expected to add to power demand [2]. (And I'm assuming a free market for battery cells, which obviously isn't where we're heading. So add local production bottlenecks to the mix.)

Battery numbers are going up. But they aren't going up fast enough and never could have, not unless we ditch electrifying transportation. Nukes or gas. Anyone pretending there is a third way is defaulting to one or the other.

[1] https://www.iea.org/reports/electricity-information-overview...

[2] https://www.goldmansachs.com/insights/articles/AI-poised-to-...

replies(9): >>41841796 #>>41841957 #>>41841969 #>>41842073 #>>41842132 #>>41842204 #>>41844378 #>>41844409 #>>41846922 #
Vvector ◴[] No.41842073[source]
"But 2 hours in 2030 against a year's demand today is still a nudge."

How much battery storage do you think we need? Surely not a year's worth.

For solar, we'd likely need 10-16 hours of storage to power stuff overnight. Maybe a little more to cover a few cloudy days. Sounds like we are about 5% of that now?

replies(2): >>41842185 #>>41842398 #
1. sudosysgen ◴[] No.41842185[source]
10-16 hours is not enough at all. On a cloudy day, solar output will only be 15-20%. On top of that, your panels really only generate for 8 hours on a very good day - the sun is a lot dimmer in the early morning and late evening. Really, you need 2x storage for a good day, if you want to deal with two cloudy days you'd want 50-60 hours of storage.
replies(2): >>41842926 #>>41844248 #
2. ckdarby ◴[] No.41842926[source]
Could you possibly read the article you're replying to again?

Even skimming through it discusses the coverage of wind and a not 50/50 system particularly to cover winter & night time. There is also discussion of a ~2% from "other" and how much storage capacity is required.

The article even goes into using wind & solar data for the simulation and reducing further the output to be conservative.

replies(1): >>41843837 #
3. sudosysgen ◴[] No.41843837[source]
I obviously understand it's not a 100% solar system. If it was you would need to be able to deal with at least 2 weeks of bad weather, not two days, and you would have to take into account winter (dropping to about 5 hours instead of 8).

Additionally, mixing solar and wind is not as easy as it seems, because the two are correlated. If you have a major storm that makes wind energy impossible due to wind speeds above ~100km/h, you will also have clouds making solar energy unworkable. I'm not aware of any simulations modelling a 95+% solar/wind grid for storage needs, taking into account extreme weather patterns, grid topology, and equipment damage, but if you do then please link it.

I don't see any article linked in the comment I replied to. Perhaps you're mixing up two comment chains.

4. pfdietz ◴[] No.41844248[source]
It's likely enough battery capacity if you combine batteries with e-fuels for longer term storage.

Assuming batteries are used for all storage use cases is one of the classic errors of energy system analysis.