←back to thread

196 points svlasov | 2 comments | | HN request time: 0.484s | source
Show context
stefanos82 ◴[] No.40851614[source]
Can I ask a naive question that consists of two parts and please don't flame me? lol

  * What type of problems static reflection could solve, in general?
  * Are there specific cases and / or situations where static reflection could resolve such case, even simplify an unnecessary complexity?
replies(8): >>40851661 #>>40851675 #>>40851709 #>>40851795 #>>40851942 #>>40852552 #>>40853159 #>>40853615 #
edflsafoiewq ◴[] No.40851795[source]
Here are some examples from the linked paper

* Converting enum values to strings, and vice versa

* Parsing command line arguments from a struct definition (like Rust's clap)

* Simple definition of tuple and variant types, without the complex metaprogramming tricks currently used

* Automatic conversion between struct-of-arrays and array-of-structs form

* A "universal formatter" that can print any struct with all its fields

* Hashing a struct by iterating over its fields

* Convert between a struct and tuple, tuple concatenation, named tuples

replies(1): >>40852011 #
greenavocado ◴[] No.40852011[source]
Converting enum values to strings, and vice versa

    enum class Color { Red, Green, Blue };

    template<typename E>
    std::string enum_to_string(E value) {
        constexpr auto enum_info = reflect(E);
        for (const auto& enumerator : enum_info.enumerators()) {
            if (enumerator.value() == value) {
                return std::string(enumerator.name());
            }
        }
        return "Unknown";
    }

    template<typename E>
    E string_to_enum(const std::string& str) {
        constexpr auto enum_info = reflect(E);
        for (const auto& enumerator : enum_info.enumerators()) {
            if (enumerator.name() == str) {
                return enumerator.value();
            }
        }
        throw std::invalid_argument("Invalid enum string");
    }

Parsing command line arguments from a struct definition

    struct CLIOptions {
        std::string input_file;
        int num_threads = 1;
        bool verbose = false;
    };

    template<typename T>
    T parse_cli_args(int argc, char* argv[]) {
        T options;
        constexpr auto struct_info = reflect(T);

        for (int i = 1; i < argc; i++) {
            std::string arg = argv[i];
            for (const auto& member : struct_info.members()) {
                if (arg == "--" + std::string(member.name())) {
                    if (member.type() == typeid(bool)) {
                        member.set(options, true);
                    } else if (i + 1 < argc) {
                        member.set(options, std::string(argv[++i]));
                    }
                    break;
                }
            }
        }
        return options;
    }

    
Simple definition of tuple and variant types

    // Common data structure used in examples below

    struct Person {
        std::string name;
        int age;
        double height;
    };

    // Tuple, without reflection

    int main() {
        std::tuple<std::string, int, double> person_tuple{"John Doe", 30, 175.5};

        std::cout << "Name: " << std::get<0>(person_tuple) << std::endl;
        std::cout << "Age: " << std::get<1>(person_tuple) << std::endl;
        std::cout << "Height: " << std::get<2>(person_tuple) << std::endl;

        Person p{"Jane Doe", 25, 165.0};
        auto p_tuple = std::make_tuple(p.name, p.age, p.height);

        return 0;
    }

    // Tuple, with reflection

    int main() {
        std::tuple<std::string, int, double> person_tuple{"John Doe", 30, 175.5};

        std::apply([](const auto&... args) {
            (..., (std::cout << reflect(args).name() << ": " << args << std::endl));
        }, person_tuple);

        Person p{"Jane Doe", 25, 165.0};
        auto p_tuple = std::apply([&p](auto... members) {
            return std::make_tuple(members.get(p)...);
        }, reflect(Person).members());

        return 0;
    }

    // Variant, without reflection

    int main() {
        std::variant<int, std::string, Person> var;

        var = 42;
        std::cout << "Variant holds: " << std::get<int>(var) << std::endl;

        var = "Hello, World!";
        std::cout << "Variant holds: " << std::get<std::string>(var) << std::endl;

        var = Person{"Alice", 28, 170.0};
        const auto& p = std::get<Person>(var);
        std::cout << "Variant holds Person: " << p.name << ", " << p.age << ", " << p.height << std::endl;

        std::visit([](const auto& v) {
            using T = std::decay_t<decltype(v)>;
            if constexpr (std::is_same_v<T, int>)
                std::cout << "Int: " << v << std::endl;
            else if constexpr (std::is_same_v<T, std::string>)
                std::cout << "String: " << v << std::endl;
            else if constexpr (std::is_same_v<T, Person>)
                std::cout << "Person: " << v.name << std::endl;
        }, var);

        return 0;
    }

    // Variant, with reflection

    int main() {
        std::variant<int, std::string, Person> var;

        var = 42;
        std::cout << "Variant holds: " << std::get<int>(var) << std::endl;

        var = "Hello, World!";
        std::cout << "Variant holds: " << std::get<std::string>(var) << std::endl;

        var = Person{"Alice", 28, 170.0};
        
        std::visit([](const auto& v) {
            constexpr auto type_info = reflect(std::decay_t<decltype(v)>);
            std::cout << "Variant holds " << type_info.name() << ": ";
            if constexpr (type_info.is_class()) {
                for (const auto& member : type_info.members()) {
                    std::cout << member.name() << ": " << member.get(v) << ", ";
                }
            } else {
                std::cout << v;
            }
            std::cout << std::endl;
        }, var);

        return 0;
    }

Automatic conversion between struct-of-arrays and array-of-structs

    template<typename Struct, size_t N>
    auto soa_to_aos(const StructOfArrays<Struct, N>& soa) {
        std::array<Struct, N> aos;
        constexpr auto struct_info = reflect(Struct);

        for (size_t i = 0; i < N; ++i) {
            for (const auto& member : struct_info.members()) {
                member.set(aos[i], soa.get(member.name())[i]);
            }
        }
        return aos;
    }

    template<typename Struct, size_t N>
    auto aos_to_soa(const std::array<Struct, N>& aos) {
        StructOfArrays<Struct, N> soa;
        constexpr auto struct_info = reflect(Struct);

        for (size_t i = 0; i < N; ++i) {
            for (const auto& member : struct_info.members()) {
                soa.get(member.name())[i] = member.get(aos[i]);
            }
        }
        return soa;
    }

Universal formatter:

    template<typename T>
    std::string format(const T& obj) {
        std::ostringstream oss;
        constexpr auto type_info = reflect(T);

        oss << type_info.name() << " {\n";
        for (const auto& member : type_info.members()) {
            oss << "  " << member.name() << ": " << member.get(obj) << ",\n";
        }
        oss << "}";
        return oss.str();
    }
Hashing a struct by iterating over its fields:

    template<typename T>
    size_t hash_struct(const T& obj) {
        size_t hash = 0;
        constexpr auto type_info = reflect(T);

        for (const auto& member : type_info.members()) {
            hash ^= std::hash<decltype(member.get(obj))>{}(member.get(obj)) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
        }
        return hash;
    }

Convert between struct and tuple, tuple concatenation, named tuples:

    // Struct to tuple
    template<typename Struct>
    auto struct_to_tuple(const Struct& s) {
        return std::apply([&](auto&&... members) {
            return std::make_tuple(members.get(s)...);
        }, reflect(Struct).members());
    }

    // Tuple to struct
    template<typename Struct, typename Tuple>
    Struct tuple_to_struct(const Tuple& t) {
        Struct s;
        std::apply([&](auto&&... members) {
            ((members.set(s, std::get<members.index()>(t))), ...);
        }, reflect(Struct).members());
        return s;
    }

    // Tuple concatenation
    template<typename... Tuples>
    auto tuple_concat(Tuples&&... tuples) {
        return std::tuple_cat(std::forward<Tuples>(tuples)...);
    }

    // Named tuple
    template<typename... Members>
    struct NamedTuple {
        REFLECT_NAMED_MEMBERS(Members...);
    };
replies(1): >>40852303 #
fluoridation ◴[] No.40852303[source]
This is terrible. You can't just do Enum::Member.str or something?
replies(5): >>40852845 #>>40853083 #>>40853438 #>>40854151 #>>40855154 #
kllrnohj ◴[] No.40852845[source]
That'll inevitably be a utility function that exists, but C++ generally prefers broadly useful language primitives over single-case helpers
replies(1): >>40854827 #
1. DrBazza ◴[] No.40854827[source]
Unfortunately. std::string `contains` arrived in C++23
replies(1): >>40856306 #
2. kllrnohj ◴[] No.40856306[source]
That's a stdlib utility, not a language feature :)