In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula[1][2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system. Expressed algebraically the law is
L=λW
The relationship is not influenced by the arrival process distribution, the service distribution, the service order, or practically anything else. In most queuing systems, service time is the bottleneck that creates the queue.
https://en.m.wikipedia.org/wiki/Little%27s_lawAn extremely useful law to remember. You’d be surprised how much bullshit it can detect!
replies(1):