I’ve observed that Pydantic - which we’ve used for years in our API stack - has become very popular in LLM applications, for its type-adjacent features. It serves as a foundational technology for prompting libraries like [DSPy](
https://github.com/stanfordnlp/dspy) which are abstracting “up the stack” of LLM apps. (some opinions there)
Operating AI apps reveals a big challenge, in that debugging probabilistic code paths requires more than the usual introspective abilities, and in an environment where function calls can have very real monetary impact we have to be able to see what’s happening in the runtime. See LangChain’s hosted solution (can’t recall the name) that allows an operator to see prompts and responses “on the wire”. (It just occurred to me that Langchain and Pydantic have a lot in common here, in approach.)
Having a coupling between Pydantic - which is *just about* the data layer itself - and an observability tool seems very interesting to me, and having this come from the folks who built it does not seem unreasonable. WRT open source and monetization, I would be lying if I said I wasn’t a little worried - given the recent few months - but I am choosing to see this in a positive light, given this team’s “believability weight” (to overuse Dalio) and history of delivering solid and really useful tooling.