←back to thread

214 points SkyMarshal | 1 comments | | HN request time: 0.216s | source
Show context
ardit33 ◴[] No.28231727[source]
The whole concept of a Dyson sphere is kinda idiotic. Any civilization that is capable to build one, it is probably able to work out fusion energy very efficiently.

There is no point to go and harness energy around a star or a black hole, when you can just produce it locally with a lot less resources/waste and materials. The sun itself is actually very inefficient in producing energy.

There is no need to harness the sun million of km away, when you can recreate it in your home planet. The only way to produce a dyson like of sphere, is to tame an over-heated sun, and reflect away un-needed energy. But there is no point to build one to just harness it.

It makes great sci-fi stories, but that's about it. Scientifically, it just doesn't make sense.

replies(16): >>28231746 #>>28231799 #>>28231848 #>>28231889 #>>28231938 #>>28231949 #>>28232030 #>>28232082 #>>28232103 #>>28232722 #>>28233342 #>>28234206 #>>28234221 #>>28234793 #>>28235507 #>>28242881 #
marcyb5st ◴[] No.28232103[source]
Because to power a type 2 civilization you need around 4 * 10^26W (as the paper states). Over a year that is around 10^31 kWh worth of energy. Assuming fusion can transform 1% of the input mass in energy you need ~ 1.4 * 10^19 kg per year. To put that number into perspective mount Everest weights 2.7×10^14 kg [1] so thousands Everests worth of mass.

That is a lot of mass to extract and transport to the power stations (accelerate, decelerate). So it just makes sense to only needing to build the facilities to collect the power from existing sources (stars, black holes) without the logistics of transporting the fuel.

Moreover, the space around a star or black hole is real estate that would go unused otherwise, while asteroids, moons, ... are more likely usable by such an advanced civilization.

[1] https://www.quora.com/What-would-the-estimated-weight-of-Mou... (I took the highest estimate in the first answer)

replies(3): >>28233623 #>>28233701 #>>28233961 #
1. PaulHoule ◴[] No.28233701[source]
The counter is that most of the usable mass in the universe is in interstellar objects such as comets and free planets which are 50% water ice or so, rich in organic materials and can be consumed completely to build habitats.

With D + D fusion (easy to believe compared to CNO) an interstellar civilization could be essentially independent of stars.

I'm sure part of the resolution of the Fermi paradox is that dry inside-the-frost-line planets like Mercury, Venus, Earth and Mars are not the generic places you find life.

If things were a bit different I could see a would-be Galileo on an less cooked version of Io or a more cooked version of Europa who looks at the Earth with a spectroscope and sees oxygen and has a huge amount of trouble with his local "church" that thinks it is impossible to have life on a planet with less tidal activity, less radiation, inside-the-frost-line dryness, etc.

Even if creatures like us became interstellar we might have millions of kilometers of condominiums and shopping malls in the oort cloud and could care less about inner solar system planets.