As another datapoint Ian (of Anandtech) estimated that the M1 would need to be clocked at 3.25Ghz to match Zen 3, and these systems are showing a 3.2Ghz clock: https://twitter.com/IanCutress/status/1326516048309460992
As another datapoint Ian (of Anandtech) estimated that the M1 would need to be clocked at 3.25Ghz to match Zen 3, and these systems are showing a 3.2Ghz clock: https://twitter.com/IanCutress/status/1326516048309460992
You can check the clock speeds: https://browser.geekbench.com/v5/cpu/4620493.gb5
Up to 5050MHz is stock behavior for the 5950X and it's using standard DDR4 3200 memory.
Rather i suspect that the main benefit that M1 has in many real world benchmarks is that it has on-chip memory, cache-miss latency is a huge cost in the real world (why games has drifted towards DoD internals), so sidestepping that issue to a large extent by integrating memory on-die gives it a great boost.
I'm betting once they've reverse engineered the M1 perf, we will see multi-GB caches on AMD/Intel chips within 4 years.
This cannot be implemented in AMD's current 7nm process due to size restrictions.
The SoC-side of the story is also contrary to the very core design of a general purpose CPU. RAM, GPU, and extension cards for specialised tasks are already covered by 3rd party products on the PCIe and USB4 buses and AMD has no interest in cannibalising their GPU and console business...
With their upcoming discrete GPUs and accelerator cards, Intel might be in the same boat w.r.t. SoC design.