I can spin up a strong ML team through hiring in probably 6-12 months with the right funding. Building a chip fab and getting it to a sensible yield would take 3-5 years, significantly more funding, strong supply lines, etc.
Not sure what to call this except "HN hubris" or something.
There are hundreds of companies who thought (and still think) the exact same thing, and even after 24 months or more of "the right funding" they still haven't delivered the results.
I think you're misunderstanding how difficult all of this is, if you think it's merely a money problem. Otherwise we'd see SOTA models from new groups every month, which we obviously aren't, we have a few big labs iteratively progressing SOTA, with some upstarts appearing sometimes (DeepSeek, Kimi et al) but it isn't as easy as you're trying to make it out to be.
As you mentioned, multiple no name chinese companies have done it and published many of their results. There is a commodity recipe for dense transformer training. The difference between Chinese and US is that they have less data restrictions.
I think people overindex on the Meta example. It’s hard to fully understand why Meta/llama have failed as hard as they have - but they are an outlier case. Microsoft AI only just started their efforts in earnest and are already beating Meta shockingly.