Having more context, but leaving open an inability to effectively focus on the latest task is the real problem.
Having more context, but leaving open an inability to effectively focus on the latest task is the real problem.
People have tried to expand context windows by reducing the O(n^2) attention mechanism to something more sparse and it tends to perform very poorly. It will take a fundamental architectural change.
I know there classes of problems that LLMs can't natively handle (like doing math, even simple addition... or spatial reasoning, I would assume time's in there too). There are ways they can hack around this, like writing code that performs the math.
But how would you do that for chronological reasoning? Because that would help with compacting context to know what to remember and what not.
That is, humans usually don't store exactly what was written in as sentence five paragraphs ago, but rather the concept or idea conveyed. If we need details we go back and reread or similar.
And when we write or talk, we form first an overall thought about what to say, then we break it into pieces and order the pieces somewhat logically, before finally forming words that make up sentences for each piece.
From what I can see there's work on this, like this[1] and this[2] more recent paper. Again not an expert so can't comment on the quality of the references, just some I found.
That is what transformers attention does in the first place, so you would just be stacking two transformers.
In theory you could attach metadata (with timestamps) to these turns, or include the timestamp in the text.
It does not affect much, other than giving the possibility for the model to make some inferences (eg. that previous message was on a different date, so its "today" is not the same "today" as in the latest message).
To chronologically fade away the importance of a conversation turn, you would need to either add more metadata (weak), progressively compact old turns (unreliable) or post-train a model to favor more recent areas of the context.